Looped Cotangent Virasoro Algebra and Non-linear Integrable Systems in Dimension 2 + 1

نویسنده

  • V. Ovsienko C. Roger
چکیده

We consider a Lie algebra generalizing the Virasoro algebra to the case of two space variables. We study its coadjoint representation and calculate the corresponding Euler equations. In particular, we obtain a bi-Hamiltonian system that leads to an integrable non-linear partial differential equation. This equation is an analogue of the Kadomtsev–Petviashvili (of type B) equation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bi-Hamiltonian nature of the equation u_tx=u_xyu_y-u_yyu_x

We study non-linear integrable partial differential equations naturally arising as bi-Hamiltonian Euler equations related to the looped cotangent Virasoro algebra. This infinite-dimensional Lie algebra (constructed in [16]) is a generalization of the classical Virasoro algebra to the case of two space variables. Two main examples of integrable equations we obtain are quite well known. We show t...

متن کامل

A diffeomorphism anomaly in every dimension

Field-theoretic pure gravitational anomalies only exist in 4k+2 dimensions. However, canonical quantization of non-field-theoretic systems may give rise to diffeomorphism anomalies in any number of dimensions. I present a simple example, where a higher-dimensional generalization of the Virasoro algebra arises upon quantization. The Polyakov action in string theory is nothing but 1+1-dimensional...

متن کامل

q - Virasoro Algebra and the Point - Splitting

It is shown that a particular q-deformation of the Virasoro algebra can be interpreted in terms of the q-local field Φ(x) and the Schwinger-like point-splitted Virasoro currents, quadratic in Φ(x). The q-deformed Virasoro algebra possesses an additional index α, which is directly related to point-splitting of the currents. The generators in the q-deformed case are found to exactly reproduce the...

متن کامل

Lie Symmetries, Kac-Moody-Virasoro Algebras and Integrability of Certain (2+1)-Dimensional Nonlinear Evolution Equations

In this paper we study Lie symmetries, Kac-Moody-Virasoro algebras, similarity reductions and particular solutions of two different recently introduced (2+1)-dimensional nonlinear evolution equations, namely (i) (2+1)-dimensional breaking soliton equation and (ii) (2+1)-dimensional nonlinear Schrödinger type equation introduced by Zakharov and studied later by Strachan. Interestingly our studie...

متن کامل

Discrete Lagrangian Systems And

We show that the continuous limit of a wide natural class of the right-invariant discrete Lagrangian systems on the Virasoro group gives the family of integrable PDE's containing Camassa-Holm, Hunter-Saxton and Korteweg-de Vries equations. This family has been recently derived by Khesin and Misio lek as Euler equations on the Virasoro algebra for H 1 α,β-metrics. Our result demonstrates a unive...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007